REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE D'ORAN-1 AHMED BENBELLA FACULTE DE MEDECINE

COENZYMES ET VITAMINES

Préparée et Présentée par : Pr SAADI-OUSLIM A-S

Année Universitaire 2023-2024

I- GENERALITES ET DEFINITION

A part un petit groupe de RNA catalytique, tous les enzymes sont des protéines

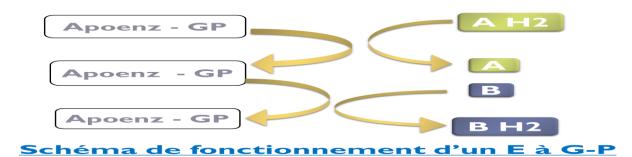
- Certains sont des Holoprotéines: uniquement constitués d'un enchainement d'amino-acide
 exp: Ribonucléase, Lysozyme....
- Beaucoup sont des **Hétéroprotéines** dans lesquelles on distingue:
 - > une partie protéique : Apoenzyme
 - Une partie non protéique : Coenzyme

L'ensemble : Apoenzyme + coenzyme donne naissance à l'enzyme actif ou Holoenzyme On distingue deux grand types de coenzymes:

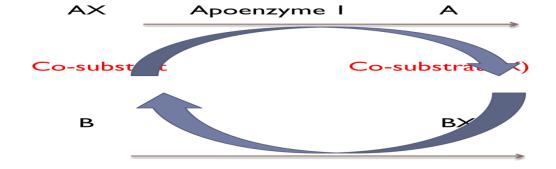
- les coenzymes libres: cosubstrat
- les coenzymes liés: groupements prosthétiques
- II- PROPRIETES GENERALES DES COENZYMES

A- Caractères communs à tous les coenzymes:

- 1- Ils ne sont pas de nature protéique (contrairement aux enzymes).
- 2- Ils sont thermostable (contrairement aux enzymes qui sont thermolabiles).
- 3- Ils ont un petit poids moléculaire.
- 4- Ils retrouvent leurs états initiaux (contrairement aux substrats).
- 5- les coenzymes ne sont pas responsables de la spécificité enzymatique (c'est l'apoenzyme qui est responsable de la spécificité enzymatique).
- 6- ils transfèrent d'une molécule à une autre : une entité X (électron, atome, groupe d'atome...) en la prenant transitoirement en charge


B – Caractères spécifiques des groupements prosthétiques:

- 1- sont solidement fixés à l'apoenzyme par des liaisons covalentes.
- 2- fonctionne dans une seule réaction enzymatique au cours de la quelle il charge puis décharge X.


Exp: reaction de déshydrogénation

A H2 + B enzyme A + B H2

C – Caractéres spécifiques des co-substrats:

- 1- sont faiblement fixés à l'apoenzyme par des liaisons non covalentes
- 2- fonctionnent dans 2 réactions enzymatiques différentes :
 - * charge X au cours da la première
 - * puis décharge au cours de la seconde(il joue le rôle d'un 2éme substrat)

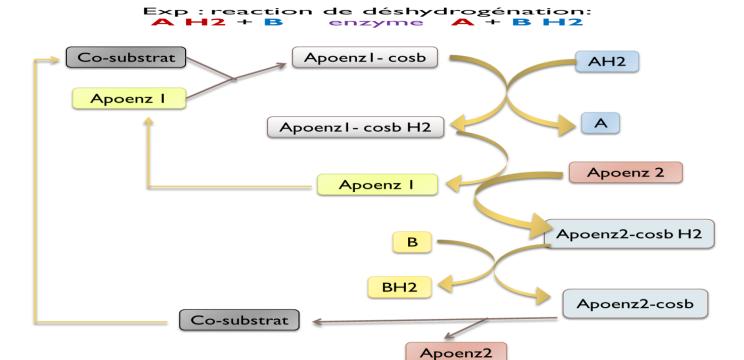


Schéma de fonctionnement d'un enz à co-substrat

III- CLASSIFICATION

On classe les coenzymes en 2 grandes catégories

A- Coenzyme d'oxydo-réduction:

Ou coenzyme de transferts d'équivalents réducteurs (électron, e- atome d'hydrogène, ion hydrure H-) : On distingue:

- Les coenzymes pyridiniques (1H-): NAD et NADP
- Les coenzymes flaviniques (2H): FAD et FMN

- ➤ Les coenzymes lipoiques (2H)
- Les coenzymes quinoniques (2H) : l'ubiquinone
- Les coenzymes héminiques (1 e-) : les cytochromes
- Les protéines à centre fer-soufre (1 e-)

B- Les coenzymes de transfert de groupement d'atomes:

- de CO2: la biotine
- > de groupement mono-carbones autre que CO2
 - les coenzymes B12 ou cobalamine
 - l'acide tétrahydrofolique
- de groupement pluricarbones
- le coenzyme A- pyrophosphate de thiamine
- > autre: le phosphate de pyridoxal

IV- RELATION ENTRE VITAMINES ET COENZYMES

De nombreuses vitamines : éléments organiques indispensables en petite quantité dans le régime alimentaire , sont des précurseurs de coenzymes.

Type de réaction catalysée	Coenzymes	Vitamines correspondantes
oxydoréduction	Les coenzymes nicotiniques (NAD, NADP+) Les coenzymes flaviniques (FAD, FMN)	Vitamine PP Vitamine B2
Réaction de carboxylation	Biotine Vitamine K	Biotine Vitamine K
Transport, échange et transformation du radical monocarboné	Acide tétrahydrofolique Methylcobalamine	Acide folique Vitamine B12
Réaction portant sur les acides aminés	Phosphate de pyridoxal	Vitamine B6
Transport de radicaux acyl	Pyrophosphate de thiamine	Vitamine BI